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Abstract

The low frequency response of an acoustic guitar is calculated by following the model proposed

by Christensen and Vistisen in which the soundhole air column and top plate are treated as coupled

oscillators.1 It is concluded that the lowest two resonances of the guitar are a direct result of the

coupling.
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I. INTRODUCTION

As a popular instrument, the acoustic guitar can provide common, real-life demon-

strations of acoustic phenomena such as traveling waves, beats and resonances. Here

we are particularly interested in using a simple model to predict the resonances of

acoustic guitars made of different materials. Such predictions can guide the selec-

tion of materials to produce guitars with different acoustic properties to suit var-

ious musical tastes. The model described here consists of two coupled oscilla-

tors and can reproduce the qualitative features of the response of an acoustic gui-

tar that is forced into oscillations at frequencies less than approximately 1000 Hz.

In Section II I describe the coupled oscillator model, starting with the equations of mo-

tion for the individual oscillators. In Section III I compare the calculated sound pressure

level, mobility level, and top plate velocity phase to the results of Christensen and Vistisen.

I also discuss the utility of the model. Appendix A is a mathematical justification for the

substitution of new variables, and Appendix B is a listing of the Mathematica code used to

generate the results presented in this paper. Lastly, Appendix C contains information re-

garding the presentation I gave at the 2007 Eastern Michigan University Graduate Research

Fair.
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II. THE COUPLED OSCILLATOR MODEL

The vibrations of guitar strings by themselves produce negligible sound (what listeners

often refer to as volume). However, the strings are fastened to the guitar body top

plate to which they transmit their vibrations. By causing the top plate to vibrate,

the strings are said to “drive” the top plate. The vibrating top plate in turn causes

the air inside the cavity to vibrate. The air inside the cavity then drives the small

column of air located in the soundhole, or the Helmholtz oscillator, of the guitar. Most

of the sound produced by the guitar is generated by the vibrations of the top plate

and of the soundhole air column, which are “coupled” by the vibrations of the air cavity.

FIG. 1: The top plate is coupled to the air column resident in the soundhole via the air cavity,

which functions like a spring. Note that the spring in the diagram is a representation of the stiffness

of the top plate.1

Typical guitars have six or twelve strings and most guitar players play all strings

simultaneously (strumming chords, for example). Determining the response of an acoustic

guitar to a single sinusoidal driving frequency may seem like oversimplifying a complex

system but as I will demonstrate, it can be done accurately for low frequencies. A guitar

can be driven monotonically in several ways. The most typical experimental methods

involve attaching a transducer to the top plate. A low-cost method to drive the top plate

involves affixing a small loudspeaker with the cardboard cone or membrane removed to the

top plate, ensuring a low-mass speaker so as to avoid mass loading. Either excitation source
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would be controlled by a frequency generator. Measurements of the resulting top plate

motion could be made by a simple microphone, accelerometer, or a laser interferometer.

We will follow the model described by Christensen and Vistisen. We begin by obtaining

the equations of motion for the top plate and air column. We solve both equations by

assuming steady state solutions of a single frequency. We then calculate the sound pressure

level and the top plate mobility as a function of the driving frequency. Finally, we calculate

the phase between top plate mobility and the driving force as a function of driving frequency.

We start to obtain the equations of motion by describing the change in volume of the air

cavity. Taking the outward motion of the oscillators to be positive, the change in volume

of the cavity is

∆V = Axp + Sxa (1)

where xp is the position of the top plate, xa is the position of the air piston,

A is the area of the top plate, and S is the area of the soundhole, respectively.

For adiabatic compression, the change in cavity pressure ∆p, is a function of the vol-

ume V , change in volume ∆V , the speed of sound in air c, and the density of air ρ:2

∆p = −µ∆V (2)

where

µ ≡ c2ρ/V (3)

The top plate is driven by a transducer at a frequency ν (angular frequency ω = 2πν)

with a force of excitation f . The top plate has a stiffness of kp and a damping force of

magnitude Rpẋp opposing motion, where Rp is a characteristic of the material, aptly termed

resistance to motion. Likewise, the air piston has a resistance to motion of Ra. Incorporating

these variables into the equation of motion for the top plate, we obtain

mpẍp = f − kpxp −Rpẋp + A∆p (4)

Inserting our expression for ∆p into Eq. (4) yields

mpẍp = f − xp(kp + µA2)−Rpẋp − µSAxa (5)

Solving for ẍp, we obtain

ẍp =
f

mp

− xp
(kp + µA2)

mp

− Rp

mp

ẋp −
µSA

mp

xa (6)
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The equation of motion of the air piston is

maẍa = S∆p−Raẋa (7)

Inserting our expression for ∆p into Eq.(7) yields

maẍa = −µS2xa −Raẋa − µSAxp (8)

Equations (6) and (8) are the equations of motion for the top plate and air piston, respec-

tively. These equations are coupled because they each depend on the coordinates xp and xa.

We now solve the equations of motion. Rearranging Equation (8), we obtain

maẍa + Raẋa + µS2xa = −µSAxp (9)

Assuming that xa has a steady state solution of the form

xa = Xae
iωt (10)

and xp has a steady state solution of the form

xp = Xpe
iωt (11)

then Eq.(9) becomes

ma(iω)2Xae
iωt + Ra(iω)Xae

iωt + µS2Xae
iωt = −µSAXpe

iωt (12)

Dividing through by eiωt and collecting like terms, we obtain

Xa(−maω
2 + iωRa + µS2) = Xp(−µSA) (13)

Solving for Xa yields

Xa =
µSA

maω2 − iωRa − µS2
Xp (14)

Now we have an expression for Xa in terms of Xp. Now we will return to Eq.(6) and solve

for Xp in terms of Xa. Assuming that the driving force has the form

f = Feiωt (15)

and inserting Eqs. (10), and Eq. (11) into Eq. (6), we obtain

−ω2Xpe
iωt +

iωRp

mp

Xpe
iωt +

kp + µA2

mp

Xpe
iωt =

Feiωt

mp

− µSA

mp

Xae
iωt (16)
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Substituting Xa from Eq. (14) and canceling factors of eiωt

−ω2Xp +
iωRp

mp

Xp +
kp + µA2

mp

Xp =
F

mp

− µSA

mp

(
µSA

maω2 − iωRa − µS2

)
Xp (17)

Rearranging the last term we have

−ω2Xp +
iωRp

mp

Xp +
kp + µA2

mp

Xp =
F

mp

− µA2

mp

(
µS2

maω2 − iωRa − µS2

)
Xp (18)

The plate resonance frequency for a closed cavity (where S = 0) is

ωp ≡ [(kp + µA2)/mp]
1/2 (19)

Using Eq. (19), the plate resonance frequency for a closed cavity with a spring constant of

zero (kp = 0) would be

ωa ≡ (µA2/mp)
1/2 (20)

A zero spring constant indicates zero restoring force; in other words, the mass remains in

the position to which it is displaced. Substitution of Eqs. (19) and (20) into Eq.(18) yields

−ω2Xp +
iωRp

mp

Xp + ω2
pXp =

F

mp

− ω2
a

(
µS2

maω2 − iωRa − µS2

)
Xp (21)

Dividing the numerator and denominator of the last term in this equation by ma allows us

to introduce the Helmholtz resonance frequency ωh. Any container with an opening smaller

than the wavelength of the sound produced has a resonant frequency at which the air resident

in the opening not the cavity - oscillates at maximum amplitude. The Helmholtz resonance

frequency with the top plate position xp held at zero by clamps is

ωh ≡
(

µS2

ma

)1/2

(22)

We now have

−ω2Xp +
iωRp

mp

Xp + ω2
pXp =

F

mp

− ω2
hω

2
a

ω2 − iω Ra

ma
− ω2

h

Xp (23)

Now we introduce the damping coefficients of the plate and the air piston in an uncoupled

system:

γa ≡ Ra/ma (24)
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γp ≡ Rp/mp (25)

Inserting γa and γp into Eq. (23) we have

−ω2Xp + iωγpXp + ω2
pXp =

F

mp

− ω2
hω

2
a

ω2 − iωγa − ω2
h

Xp (26)

Gathering the Xp terms to the left hand side, we obtain

Xp

(
−ω2 + iωγp + ω2

p +
ω2

hω
2
a

ω2 − iωγa − ω2
h

)
=

F

mp

(27)

Next we multiply through by ω2 − iωγa − ω2
h

Xp[(−ω2 + iωγp + ω2
p)(ω

2 − iωγa − ω2
h) + ω2

hω
2
a] =

F

mp

(ω2 − iωγa − ω2
h) (28)

Multiplying both sides by −1 and rearranging terms

Xp

[
(ω2

p − ω2 + iωγp)(ω
2
h − ω2 + iωγa)− ω2

hω
2
a

]
=

F

mp

(ω2
h − ω2 + iωγa) (29)

Solving for Xp yields

Xp =

F
mp

(ω2
h − ω2 + iωγa)

(ω2
p − ω2 + iωγp)(ω2

h − ω2 + iωγa)− ω2
hω

2
a

(30)

To obtain top plate velocity up, we differentiate Eq.(11) with respect to time:

ẋp = up = Upe
iωt = Xp(iω)eiωt (31)

Therefore

Up = iωXp = iω

F
mp

(ω2
h − ω2 + iωγa)

(ω2
p − ω2 + iωγp)(ω2

h − ω2 + iωγa)− ω2
hω

2
a

(32)

Defining ωph as our coupling frequency

ω4
ph ≡ ω2

hω
2
a (33)

and defining the denominator as

D ≡ (ω2
p − ω2 + iωγp)(ω

2
h − ω2 + iωγa)− ω4

ph (34)

we can now rewrite Eq. (32) as

Up = iω(F/mp)
[
[(ω2

h − ω2) + iωγa]/D
]

(35)
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To determine ua, the air column velocity, we must return to Xa. Recall that

Xa =
µSA

maω2 − iωRa − µS2
Xp (36)

Dividing the numerator and denominator by ma

Xa =
µSA
ma

ω2 − iω Ra

ma
− µS2

ma

Xp (37)

Substituting Eq. (22) and our definition for γa into this equation we have

Xa =
A
S
ω2

h

ω2 − iωγa − ω2
h

Xp (38)

Next we insert Eq. (30) for Xp into Eq. (38)

Xa =
A
S
ω2

h

ω2 − iωγa − ω2
h

×
F
mp

(ω2
h − ω2 + iωγa)

(ω2
p − ω2 + iωγp)(ω2

h − ω2 + iωγa)− ω2
hω

2
a

(39)

The denominator on the right is equal to D. We also factor out a negative sign from the

numerator on the right.

Xa =
A
S
ω2

h

ω2 − ω2
h − iωγa

×
− F

mp
(ω2 − ω2

h − iωγa)

D
(40)

Canceling and collecting appropriate terms we have

Xa = −(F/mp)(A/S)(ω2
h/D) (41)

Differentiating Eq. (10) yields

ẋa = ua = Uae
iωt = Xa(iω)eiωt (42)

Therefore

Ua = iωXa = −iω(F/mp)(A/S)(ω2
h/D) (43)

When the denominator approaches zero, Ua approaches infinity and the air column is said

to be vibrating in resonance. Assuming negligible damping, i.e., ωγp << ω2
p − ω2 and

ωγa << ω2
h − ω2, we can set the resulting denominator equal to zero and determine the

resonant frequencies of the air piston.

(ω2
p − ω2)(ω2

h − ω2)− ω4
ph = 0 (44)
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This can be solved using the quadratic equation. To make it a little easier to see, I set

ω2
p = a, ω2

h = b, ω4
ph = c and ω2 = x.

(a− x)(b− x)− c = 0 (45)

x2 − ax− bx + ab− c = 0 (46)

x2 + (−a− b)x + (ab− c) = 0 (47)

Using the quadratic formula, we find

x =
(a + b)± [(a + b)2 − 4(ab− c)]

1/2

2
(48)

Separating (a + b) we have

x =
a + b

2
± [(a2 + 2ab + b2)− 4ab + 4c]

1/2

2
(49)

x =
a + b

2
± (a2 − 2ab + b2 + 4c)1/2

2
(50)

Now we substitute back in our original values for x, a, b and c. We label the resulting resonant

frequencies:

ω2
± =

ω2
p + ω2

h

2
±

(ω4
p − 2ω2

pω
2
h + ω4

h + 4ω4
ph)

1/2

2
(51)

The numerator in the root can be simplified

ω2
± =

ω2
p + ω2

h

2
±

[
(ω2

p − ω2
h)

2 + 4ω4
ph

]1/2

2
(52)

The resonant frequencies of the coupled system can therefore be calculated if the frequencies

ωp, ωh, and ωph (or ωa) are known. By adding the expressions for ω2
+ and ω2

−, we obtain an

important equation that will be used to calculate the value of ωp.

ω2
+ + ω2

− = ω2
p + ω2

h (53)

Now we introduce quantities related to damping, γ+ and γ−. I will show that these

correspond to the first and second resonances that are observed experimentally.

γ+ = [(1 + G)/2G][γp + [(G− 1)/(G + 1)]γa] (54)
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γ− = [(1 + G)/2G][γa + [(G− 1)/(G + 1)]γp] (55)

with

G = (ω2
+ − ω2

−)/(ω2
p − ω2

h) (56)

In Appendix A, I use these quantities show that the denominator D can be written in

terms of γ+ and γ−. The result is

D = (ω2
+ − ω2 + iωγ+)(ω2

− − ω2 + iωγ−) (57)

Now we will calculate and graph the sound pressure level, the top plate mobility and

phase versus frequency. To generate these three graphs, measurements of the frequen-

cies of the two lowest resonances and the width of the frequency response curves at

those frequencies are required. First, we will calculate and plot the sound pressure level.

Assuming a standard tuning, the wavelengths of the sound waves generated by playing

plucking the strings of an acoustic guitar are between 1 and 4 meters. These wavelengths are

considerably larger than the lower bout of the guitar, so we can approximate the acoustical

radiation generated by a guitar as that generated by a simple source. The sound pressure

at a distance R from a simple source radiating into a solid angle of 4π is4

p = −iωρU/4πR (58)

where U is the total volume velocity of the source described by

U = AUp + SUa (59)

Substituting Eqs. (35) and (43) for Up and Ua into Eq. (59) yields

U = A(iω)(F/mp)
[
[(ω2

h − ω2) + iωγa]/D
]
+ S(−iω)(F/mp)(A/S)(ω2

h/D) (60)

Canceling appropriate terms, the expression for U becomes

U =
AiωF

Dmp

(iωγa − ω2) (61)

Substituting Eq.(61) into Eq.(58) yields

p =
−iωρ

4πR

(
AiωF

Dmp

)
(iωγa − ω2) (62)
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The i2 cancels the negative sign and the result is

p =
ω3AρF

4πRDmp

(iγa − ω) (63)

Assuming that γa is far smaller than ω,

p = − ω4AρF

4πRDmp

(64)

To graph the sound pressure with respect to ω we must determine the magnitude

of p. Multiplying the denominator, D = D1 + iD2, by its complex conjugate we obtain

1

D1 + iD2

× D1 − iD2

D1 − iD2

=
D1 − iD2

D2
1 + D2

2

(65)

For the magnitude we square the real and imaginary parts, add them together and take the

square root. Fortunately, this leaves us with∣∣∣∣ 1D
∣∣∣∣ =

(
1

D2
1 + D2

2

)1/2

(66)

The magnitude of the pressure is therefore:

|p| = ω4AρF

4πRmp

(
1

D2
1 + D2

2

)1/2

(67)

I used Mathematica to generate my plots because of personal familiarity with the

program. Because it is a more common experimental practice to control frequency, I have

plotted the quantities of interest versus frequency and not angular frequency. Additionally,

the commonly measured sound pressure level, in units of decibels (dB), is related to the

pressure by

SPL = 20Log10

(
p

p0

)
dB (68)

where p0 is a reference pressure of 20 µPa. Inserting our expression for pressure into

this equation and graphing SPL as a function of frequency yields the plot in Fig. 2.

Next we calculate the top plate mobility level versus the driving frequency. We will

examine the top plate because it provides easily measurable changes. The top plate velocity

is

Up = iω(F/mp)
[
[(ω2

h − ω2) + iωγa]/D
]

(69)
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We need a value for γa, so we revisit Eq. (54):

γ+ = [(1 + G)/2G] [γp + [(G− 1)/(G + 1)]γa] (70)

First we solve for γp in terms of γa and γ+.

γp =
2Gγ+

(1 + G)
− (G− 1)

(G + 1)
γa (71)

Now we insert this expression into Eq. (55)

γ− =

[
(1 + G)

2G

]{
γa +

(G− 1)

(G + 1)
×
[

2Gγ+

(1 + G)
− (G− 1)

(G + 1)
γa

]}
(72)

Distributing (1 + G) and multiplying through by 2G we have

2Gγ− = (1 + G)γa + (G− 1)×
[

2Gγ+

(1 + G)
− (G− 1)

(G + 1)
γa

]
(73)

Distributing γa in the last term on the right and multiplying both sides by (G + 1) yields

2Gγ−(G + 1) = (G + 1)2γa + (G− 1)[2Gγ+ − γaG + γa] (74)

Dividing both sides by (G− 1) and moving the γa term to the left side

γa

[
(G + 1)2

(G− 1)
−G + 1

]
=

2Gγ−(G + 1)

(G− 1)
− 2Gγ+ (75)

Now it should be evident that solving for γa requires only simple algebraic manipulation,

the result of which is

γa =
1

2
[(G + 1)γ− + (G− 1)γ+] (76)

And upon insertion of our value for G we arrive at

γa =
1

2

(
ω2

+ − ω2
−

ω2
p − ω2

h

+ 1

)
γ− +

1

2

(
ω2

+ − ω2
−

ω2
p − ω2

h

− 1

)
γ+ (77)

Now that we have an equation to describe γa we return to our equation for the top plate

velocity. The final task before plotting is determining the magnitude of Up. Returning to

Eq. (35)

Up = iω(F/mp)
[
[(ω2

h − ω2) + iωγa]/D
]

(78)
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Distributing the first i will produce identical results so it can be ignored in the subsequent

calculations. The magnitude of Up is the square root of the sum of the squares of both real

and imaginary terms.

|Up| =
(

ωF

mp

)
[(ω2

h − ω2)2 + (ω2γ2
a)

2]
1/2

|D|
(79)

Inserting our expression from Eq. (66) we arrive at

|Up| =
(

ωF

mp

)[
(ω4

h − 2ω2
hω

2 + ω4 + ω2γa)
1/2

(D2
1 + D2

2)
1/2

]
(80)

Defining the top plate mobility, M , as the ratio of the top plate velocity and driving force,

M =
up

f
=

Up

F
(81)

we can now plot the top plate mobility level as a function of the driv-

ing frequency in Fig. 3. To make the correlation between the sound pres-

sure level plot and the top plate mobility level plot evident, I’ve multiplied the

base ten logarithm of top plate mobility level by 20 as I’ve done with SPL.

Next we will calculate the phase Φ of the top plate velocity relative to the driving force.

The phase of a complex expression can be calculated by taking the inverse tangent of the

imaginary component divided by the real component. Mathematically

Φ(up/f ) = tan−1

[
Im(up/f )

Re(up/f )

]
(82)

Recall that

Up =
iωF

mp

×
[
(ω2

h − ω2) + iωγa

]
× D1 − iD2

D2
1 + D2

2

(83)

Distributing the numerator on the right and i on the left and dividing through by F we have

Up/F =
ω

mp(D2
1 + D2

2)
×
[
(D1ωγa −D2ω

2
h + D2ω

2) + i(D1ω
2
h −D1ω

2 + ωD2γa)
]

(84)

The ratio of the imaginary component to the real component conveniently cancels out the

prefactor, leaving

Φ(Up/F ) = tan−1

[
D1ω

2
h − D1ω

2 + ωD2γa

D1ωγa − D2ω2
h + D2ω2

]
(85)

From this equation we plot the phase of the top plate

velocity versus the frequency in Fig. 4.
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FIG. 2: Sound pressure level versus driving frequency. Here, fh = 127 Hz, f− = 104 Hz, f+ =

219 Hz, mp = 112 g, γ− = 22.5 rad/s, γ+ = 53.3 rad/s.
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FIG. 3: Mobility level of the top plate versus driving frequency. The same values that were used

in Fig. 2 were used to calculate the mobility level.
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FIG. 4: Phase of the top plate velocity relative to the driving force versus driving frequency. A few

different parametric values were used to calculate the phase. Here, fh = 124 Hz, f− = 102 Hz, f+ =

214 Hz, mp = 112 g, γ− = 22.01 rad/s, γ+ = 52.12 rad/s. Note that the phase becomes negative

at both f− and f+, shortly after 100 Hz and 200 Hz respectively.

Plotting these equations required numerical values for the following variables: ωh,

ω−, ω+, mp, γ− and γ+. Because frequency is more commonly measured than angular

frequency, our experimental values for ωh, ω− and ω+ are defined in terms of fh, f− and f+.

The values for fh, the Helmholtz resonance frequency of the air cavity of the

guitar, can be calculated given the dimensions of the body of the guitar. It is

more easily and accurately obtained, along with the first two resonance frequencies

of the guitar, f− and f+, by driving the top plate and observing the amplitude of

top plate displacement and velocity. The mass of the top plate, mp, can be mea-

sured directly or calculated using fp assuming the stiffness of the top plate is known.

The values for γ− and γ+ are obtained similarly. The value for γ− is calculated using

γ− = 2πδf− (86)

and measuring the frequency difference δf− between the 3-dB limits of the first resonance,

f−, in the sound pressure level. Similar measurement and calculation yields the value for γ+.

In the absence of equipment for which these measurements could be made I have used

values obtained through experiment by Christensen and Vistisen.
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III. RESULTS AND DISCUSSION

The data of Christensen and Vistisen provided the values used to generate the

three plots. Our calculations therefore yielded identical graphs for sound pres-

sure level, mobility level and phase, verifying the accuracy of our calculations.
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FIG. 5: The plot on the left is the sound pressure level versus driving frequency plot calculated in

this paper. On the right is the same plot generated by Christensen and Vistisen; they represent

their theoretical results with dots and their experimental data with a solid line.
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FIG. 6: The plot on the left is the mobility level versus the driving frequency plot calculated in

this paper. The plot on the right is the same plot generated by Christensen and Vistisen; they

represent their theoretical results with a dotted line and experimental data with a solid line.
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FIG. 7: The plot on the left is the phase of the mobility versus the driving frequency as calculated

in this paper. The plot on the right is the same plot generated by Christensen and Vistisen; they

represent their theoretical results with a solid line and their experimental data with dots.

Unexplained by our model are the tertiary resonances evident in the experi-

mental data of Christensen and Vistisen. These tertiary resonances are observ-

able in the sound pressure level and mobility level plots (Fig. 5 and Fig. 6).

I suspect that a similar theoretical model for the acoustic guitar incorporating a

third coupled oscillator, namely the back plate, would display a tertiary resonance.

The primary weakness of this model is its utility, which appears to be limited to academic

study. The reason for this weakness is that the values for f+, f−,γ+ and γ− can only be ob-

tained experimentally; a measurement of the frequency response of the guitar must be made

to obtain these values. A theoretical model reliant on experimental values would be of little

practical value, especially to someone seeking to improve the method of guitar construction.

For example, a luthier - seeking to alter the sound of a guitar by varying the material of the

top plate - would be interested in the predicted frequency response of the guitar prior to

construction. Because of the primary weakness of this model, the luthier would have to first

construct the guitar and then make measurements to obtain the values for f−, f+, γ− and γ+.

Once the experimental values are obtained, a few calculations reveal one use for the model.

The values for f+, f−,γ+ and γ− can be used in conjunction with the calculated values wp

and wh to determine Rp and Ra, values characteristic of the material of the top plate and air

column respectively. Damping coefficients of the top plate and air piston would first be cal-

culated. Multiplying the damping coefficients by their respective masses, obtained through

density and dimension measurements, will yield their respective resistance to motion.
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APPENDIX A: INTRODUCING TWO NEW GAMMAS

In this section I show that the implementation of new variables γ+ and γ− into our

model is mathematically sound; I do this by equating the expression for the denominator

with a proposed new expression which includes the new variabes. By comparing the coeffi-

cients of all variables I demonstrate the validity of the substitution of our new expression.

We begin with our old expression for the denominator.

D = (ω2
p − ω2 + iωγp)(ω

2
h − ω2 + iωγa)− ω4

ph (A1)

Distributing, we have

D = ω2
pω

2
h − ω2ω2

p + iωω2
pγa − ω2ω2

h + ω4 − iω3γa + iωω2
hγp − iω3γp − ω2γpγa − ω4

ph (A2)

Grouping real and imaginary terms we arrive at

D = (ω2
pω

2
h − ω2ω2

p − ω2ω2
h + ω4 − ω2γpγa − ω4

ph) + i(ωω2
pγa − ω3γp − ω3γa + ωω2

hγp) (A3)

Next we examine our new expression for the denominator that includes γ+ and γ−.

D = (ω2
+ − ω2 + iωγ+)(ω2

− − ω2 + iωγ−) (A4)

Distributing, we have

D = ω2
+ω2

− − ω2ω2
+ + iωω2

+γ− − ω2ω2
− + ω4 − iω3γ− + iωω2

−γ+ − iω3γ+ − ω2γ+γ− (A5)

Grouping real and imaginary terms

D = (ω2
+ω2

− − ω2ω2
+ − ω2ω2

− + ω4 − ω2γ+γ−) + i(ωω2
+γ− − ω3γ− + ωω2

−γ+ − ω3γ+) (A6)

We equate the imaginary parts from Eqs. (A3) and (A6).

ωω2
pγa − ω3γp − ω3γa + ωω2

hγp = ωω2
+γ− − ω3γ− + ωω2

−γ+ − ω3γ+ (A7)

A factor of ω cancels from each term. Again looking at just the ω2 terms that remain

ω2γp + ω2γa = ω2γ+ + ω2γ− (A8)

which implies that

γp + γa = γ+ + γ− (A9)
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Another important result of equating imaginary terms is what remains when the ω2 terms

are removed.

ω2
pγa + ω2

hγp = ω2
+γ− + ω2

−γ+ (A10)

Solving Eq. (A9) for γ−,

γ− = γa + γp − γ+ (A11)

Combining this result with Eq. (A10), we obtain

ω2
pγa + ω2

hγp = ω2
+(γa + γp − γ+) + ω2

−γ+ (A12)

Solving this equation for γ+,

γ+ =
γa(ω

2
p − ω2

+) + γp(ω
2
h − ω2

+)

ω2
− − ω2

+

(A13)

Leaving this equation for a moment, we now rearrange Eq. (54). First we multiply

through by 2G and distribute (1+G).

2Gγ+ = (1 + G)γp + (G− 1)γa (A14)

Next we substitute the definition of G from Eq. (56)

2

(
ω2

+ − ω2
−

ω2
p − ω2

h

)
γ+ =

(
1 +

ω2
+ − ω2

−
ω2

p − ω2
h

)
γp +

(
ω2

+ − ω2
−

ω2
p − ω2

h

− 1

)
γa (A15)

Substituting our expression for γ+ from Eq.(A13) into this equation we obtain

2

(
ω2

+ − ω2
−

ω2
p − ω2

h

)[
γa(ω

2
p − ω2

+) + γp(ω
2
h − ω2

+)

ω2
− − ω2

+

]
=

(
1 +

ω2
+ − ω2

−
ω2

p − ω2
h

)
γp +

(
ω2

+ − ω2
−

ω2
p − ω2

h

− 1

)
γa(A16)

Canceling terms of (ω2
+ − ω2

−) and multiplying through by (ω2
p − ω2

h) yields

−2
[
γa(ω

2
p − ω2

+) + γp(ω
2
h − ω2

+)
]

= (ω2
p − ω2

h + ω2
+ − ω2

−)γp + (ω2
+ − ω2

− − ω2
p + ω2

h)γa(A17)

Distributing the two, multiplying both sides by −1 and rearranging a few terms on the right

hand side we obtain

2γa(ω
2
p − ω2

+) + 2γp(ω
2
h − ω2

+) = γa(ω
2
p − ω2

+ + ω2
− − ω2

h) + γp(ω
2
h − ω2

+ + ω2
− − ω2

p) (A18)
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Recall from Eq. (53) that

ω2
+ + ω2

− = ω2
p + ω2

h (A19)

Rearranging this equation yields

ω2
− − ω2

h = ω2
p − ω2

+ (A20)

will replace the latter two terms in the γa expression on the right. Also,

ω2
− − ω2

p = ω2
h − ω2

+ (A21)

which we’ll use to replace the latter two terms in the γp expression on the right. Doing so

we obtain

2γa(ω
2
p − ω2

+) + 2γp(ω
2
h − ω2

+) = γa(ω
2
p − ω2

+ + ω2
p − ω2

+) + γp(ω
2
h − ω2

+ + ω2
h − ω2

+) (A22)

Each expression yields a factor of 2 such that

2γa(ω
2
p − ω2

+) + 2γp(ω
2
h − ω2

+) = 2γa(ω
2
p − ω2

+) + 2γp(ω
2
h − ω2

+) (A23)

Having showed that both sides are equivalent, we are justified in making the γ+ and γ−

substitutions.
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APPENDIX B: MATHEMATICA CODE

I used Mathematica to generate the plots for sound pressure level, mobility level and

phase. Below is the code pertaining to each plot. Note that the following substitutions

were made in the Mathematica code: a = f+, b = f−, c = γ+, d = γ−, e = fh and x = f .

Plot!a ! 219"2#Pi; b ! 104"2#Pi; c ! 53.3340148168; d ! 22.5328024809;
r ! "a^2#""b^2# $ "a^2 % b^2 $ ""2#Pi"x#^2# $ c"d#"""2#Pi"x#^2#;
i ! "2#Pi"x#"""a^2#"d $ ""2#Pi"x#^2#"d % "b^2#"c $ ""2#Pi"x#^2#"c#;
20"Log!10, ""0.004708925827#"""2#Pi"x#^4#$""r^2 % i^2#^"1$2###$"20""10^$6##%,&x, 50, 300', PlotRange & &30, 90', GridLines & Automatic,
ImageSize & &500, Automatic', AxesLabel & &v!Hz%, SPL!dB%', AxesOrigin & &70, 30'%
FIG. 8: The Mathematica code for generating the sound pressure level vs. frequency plot.

Plot!a ! 219"2#Pi; b ! 104"2#Pi; c ! a"25.8; d ! b"29.0; w ! 2#Pi"x;
dr ! #a^2$"#b^2$ $ #w^2$##a^2 % b^2$ % w^4; di ! w###a^2$"d % #b^2$"c $ #w^2$##c % d$$;
e ! 127"2#Pi; f ! 0.5"#$#j $ 1.0$"c % #j % 1.0$"d$; j ! #a^2 $ b^2$"#p^2 $ e^2$;
p ! #a^2 % b^2 $ e^2$^#1"2$; nr ! ##e^2 $ w^2$"dr % #2#Pi"x"f"di$$;
ni ! ##w "f"dr$ $ #e^2 $ w^2$"di$;
20"Log!10, #w ".112$"##nr^2 % ni^2$^#1"2$$"#dr^2 % di^2$%,&x, 70, 300', PlotRange & &$70, $10', GridLines & Automatic,
ImageSize & &500, Automatic', AxesLabel & &v !Hz%, ML !dB%', AxesOrigin & &70, $70'%
FIG. 9: The Mathematica code for generating the mobility level vs. driving frequency plot.

Plot!a ! 214"2#Pi; b ! 102"2#Pi; c ! 52.12; d ! 22.099;
e ! 124"2#Pi; f ! 7.9137; g ! "a^2#""b^2# $ "a^2#"""2#Pi"x#^2# $"b^2#"""2#Pi"x#^2# % ""2#Pi"x#^4# $ ""2#Pi"x#^2#""c"d#;
h ! "2#Pi"x#""a^2#""d# $ ""2#Pi"x#^3#""d# % "2#Pi"x#""b^2#""c# $ ""2#Pi"x#^3#""c#;
ArcTan!$"g""e^2# $ g"""2#Pi"x#^2# % 2#Pi"x"h"f#$"g""2#Pi"x#"f $ h""e^2# % h"""2#Pi"x#^2##%$ °, &x, 50, 285',
PlotRange & &$90, 90', GridLines & Automatic, ImageSize & &500, Automatic',
AxesLabel & &v!Hz%, Phase !Deg%', AxesOrigin & &50, 0'%

FIG. 10: The Mathematica code for generating the phase vs. driving frequency plot.
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APPENDIX C: GRADUATE RESEARCH FAIR PRESENTATION

On March 26, 2007, I presented my calculations at the Eastern Michigan University

Graduate Research Fair. Fig. 11 is the poster I presented at the fair. Notice on the

poster that at the time of the presentation I had produced graphs that resembled that of

Christensen and Vistisen but was unable to match their units. Additionally, the limitations

of the model were yet to be realized and a three oscillator model was intended to be

attempted, incorporating the back plate of the guitar. Since the presentation, I discovered

unsuccessful attempts by others to use the discrete model described in this paper to

permit a third degree of freedom. Finite element analysis, however, has been success-

fully implemented to produce a three oscillator model that matches experimental results.3

FIG. 11: The poster I created for the 2007 Graduate Research Fair. Note the dissimilarities

between the Christensen and Vistisen model and the model that I calculated.
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